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Data Distribution Management

 DDM services are part of the IEEE 1516 "High Level
Architecture” (HLA) specification
* Given

- Sets of subscription and update regions in a d-dimensional
space

- Update regions (extents) generate events

— Subscription regions must receive events generated by
overlapping update regions

* Goal
- Find find all update/subscription pairs that overlap
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Example in d = 2 dimensions
A

Intersections:
B (81’ U1)’ (Sz’ Uz)’ (Ss’ U1)’ (83’ Uz)
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The Region Matching Problem

* Can be solved using spatial data structures and
related algorithms

- e.g., k-d-trees, R-trees, Quad-trees, ...
* However, simpler algorithms are generally preferred
for DDM implementations

- Brute-Force
- Grid-Based [Boukerche and Dzermajko 2001]

- Sort-Based [Raczy, Tan and Yu 2005]
- Interval-Tree [Marzolla, D'Angelo and Mandrioli 2013]
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The Region Matching Problem

* The Region Matching Problem in d > 1 dimensions
can be reduced to d instances on 1D intervals

A

- .
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The Region Matching Problem

* The Region Matching Problem in d > 1 dimensions
can be reduced to d instances on 1D intervals
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Sort-Based Matching

e Sort endpoints

e Scan endpoints in sorted order

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.

- For each endpoint ¢
* If t marks the beginning of a subs/upd interval X, then
— add Xto SubSet or UpdSet

* Else
- remove X from SubSet or UpdSet

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)
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UpdSet ={ }
SubSet ={}
Intersections = { }
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Example

UpdSet ={ }
SubSet={ S }
Intersections = { }
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Example

UpdSet={ U_}
SubSet={ S }
Intersections = { }
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Example

UpdSet={ U , U }
SubSet={ S }
Intersections = { }
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Example

UpdSet={U_, U}
SubSet = {}
Intersections = {(S_, U ), (S, U))}
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Example

UpdSet={U_, U}
SubSet={S }
Intersections = {(S_, U ), (S, U))}
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Example

UpdSet ={ U_ }
SubSet={$S,}
Intersections = {(S,, U,), (S,,U,), (S, U))}
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Example

UpdSet = { U}
SubSet = {}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,)}
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Example

UpdSet = { U}
SubSet={S_}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,)}
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Example

UpdSet = {}
SubSet={S_}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,). (S, U)}
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Example

UpdSet = {}
SubSet = {}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,). (S, U)}
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Parallel Sort-Based Matching
on Shared-Memory Systems

e Sort endpoints

e Scan endpoints

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.

- For each endpoint ¢
* If t marks the beginning of a subs/upd interval X, then
- add X to SubSet or UpdSet

* Else
- remove X from SubSet or UpdSet

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)
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Parallel Sort-Based Matching
on Shared-Memory Systems

e Sort endpoints in parallel

e Scan endpoints

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.

- For each endpoint ¢
* If t marks the beginning of a subs/upd interval X, then
- add X to SubSet or UpdSet

* Else
- remove X from SubSet or UpdSet

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)
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Parallel Sort-Based Matching
on Shared-Memory Systems

e Sort endpoints in parallel @

* Scan endpoints in parallel??? Q

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.
- For each endpoint ¢

* |f t marks the beginning of a subs/upd interval X, then

- add X'to SubSet or UpdSet -w— .
. Else — Loop-carried

- remove X from SubSet or UpdSet / dep endencies

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)
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Performance Evaluation

Parallel SBM implemented in C++/OpenMP

Testing according to the methodology used in
[Raczy et al. 20035]

Instances with a single dimension

Parameters:

— N = number of intervals S Area of intervals

_q= lapping d =
o = overlapping degree Total area of the routing space
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Execution platforms
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Speedup
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Strong Scaling Efficiency
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Weak Scaling Efficiency
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Conclusions

* Parallel SBM improves the already fast SBM algorithm

- Can take advantage of modern multicore processors
* The speedup is limited by several factors

— The parallel sorting phase
- Intrinsecally serial regions
- The baseline is very fast!

e Future works

- Improve scaling efficiency

- Extend the parallel SBM algorithm to cope with moving
regions

- Implement parallel SBM on the GPU (?77?)
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Thanks for your attention

Questions?
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Brute-Force Matching
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Brute-Force Matching
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Grid-Based Matching

[EEE/ACM DS-RT 2017

38



Grid-Based Matching

_\m
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Grid-Based Matching
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Grid-Based Matching
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Interval-Tree Matching

Based on the Interval Tree data structure
Solves the 1D matching problem

Subscription (Update) intervals are stored in the
leaves of an Interval Tree

- Balanced Search Tree

- Internal nodes are augmented with auxiliary data used to
steer queries towards overlapping intervals

Intersections can be identified with a tree visit for each

Update (Subscription) interval

Moreno Marzolla, Gabriele D'Angelo, Marco Mandrioli, A Parallel Data Distribution
Management Algorithm, proc. DS-RT 2013, http://dx.doi.org/10.1109/DS-RT.2013.23
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