Parallel Sort-Based Matching for
Data Distribution Management on
Shared-Memory Multiprocessors

Moreno Marzolla (moreno.marzolla@unibo.it)
Gabriele D'Angelo (g.dangelo@unibo.it)

Dept. of Computer Science and Engineering
University of Bologna



Data Distribution Management

 DDM services are part of the IEEE 1516 "High Level
Architecture” (HLA) specification
* Given

- Sets of subscription and update regions in a d-dimensional
space

- Update regions (extents) generate events

— Subscription regions must receive events generated by
overlapping update regions

* Goal
- Find find all update/subscription pairs that overlap

[EEE/ACM DS-RT 2017



Example in d = 2 dimensions
A

Intersections:
B (81’ U1)’ (Sz’ Uz)’ (Ss’ U1)’ (83’ Uz)

[EEE/ACM DS-RT 2017



The Region Matching Problem

* Can be solved using spatial data structures and
related algorithms

- e.g., k-d-trees, R-trees, Quad-trees, ...
* However, simpler algorithms are generally preferred
for DDM implementations

- Brute-Force
- Grid-Based [Boukerche and Dzermajko 2001]

- Sort-Based [Raczy, Tan and Yu 2005]
- Interval-Tree [Marzolla, D'Angelo and Mandrioli 2013]

[EEE/ACM DS-RT 2017



The Region Matching Problem

* The Region Matching Problem in d > 1 dimensions
can be reduced to d instances on 1D intervals

A

- .

[EEE/ACM DS-RT 2017



The Region Matching Problem

* The Region Matching Problem in d > 1 dimensions
can be reduced to d instances on 1D intervals

A
S1
B U,
(S, V)
(S, U)
(S, U)
(S, U))
(S, U) S,
S2
U
? (S, U)
> (S, U)
(S, U)
(S, U,)

IEEE/ACM DS-RT 2017 (S.,U)
3 T2



The Region Matching Problem

* The Region Matching Problem in d > 1 dimensions
can be reduced to d instances on 1D intervals

A

| B "

(S, U)
(S, U.)
(S,,U)
(S,,U)
(S, U) S

o0 2 o
(S, U,) _ (S,.U,)

(22’ 32) < (S,U)
(S, Uy) (S, U)

(S, Uy) IEEE/ACM DS-RT 2017 (S, U) 7




Sort-Based Matching

e Sort endpoints

e Scan endpoints in sorted order

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.

- For each endpoint ¢
* If t marks the beginning of a subs/upd interval X, then
— add Xto SubSet or UpdSet

* Else
- remove X from SubSet or UpdSet

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)

[EEE/ACM DS-RT 2017



UpdSet ={ }
SubSet ={}
Intersections = { }

IEEE/ACM DS-RT 2017




Example

UpdSet ={ }
SubSet={ S }
Intersections = { }

[EEE/ACM DS-RT 2017

10



Example

UpdSet={ U_}
SubSet={ S }
Intersections = { }

[EEE/ACM DS-RT 2017

11



Example

UpdSet={ U , U }
SubSet={ S }
Intersections = { }

[EEE/ACM DS-RT 2017

12



Example

UpdSet={U_, U}
SubSet = {}
Intersections = {(S_, U ), (S, U))}

[EEE/ACM DS-RT 2017

13



Example

UpdSet={U_, U}
SubSet={S }
Intersections = {(S_, U ), (S, U))}

[EEE/ACM DS-RT 2017

14



Example

UpdSet ={ U_ }
SubSet={$S,}
Intersections = {(S,, U,), (S,,U,), (S, U))}

[EEE/ACM DS-RT 2017

15



Example

UpdSet = { U}
SubSet = {}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,)}

[EEE/ACM DS-RT 2017

16



Example

UpdSet = { U}
SubSet={S_}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,)}

[EEE/ACM DS-RT 2017

17



Example

UpdSet = {}
SubSet={S_}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,). (S, U)}

[EEE/ACM DS-RT 2017

18



Example

UpdSet = {}
SubSet = {}

Intersections = { (S, U.), (S,,U,), (S,, U),

(S, U,). (S, U)}

[EEE/ACM DS-RT 2017

19



Parallel Sort-Based Matching
on Shared-Memory Systems

e Sort endpoints

e Scan endpoints

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.

- For each endpoint ¢
* If t marks the beginning of a subs/upd interval X, then
- add X to SubSet or UpdSet

* Else
- remove X from SubSet or UpdSet

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)

[EEE/ACM DS-RT 2017

20



Parallel Sort-Based Matching
on Shared-Memory Systems

e Sort endpoints in parallel

e Scan endpoints

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.

- For each endpoint ¢
* If t marks the beginning of a subs/upd interval X, then
- add X to SubSet or UpdSet

* Else
- remove X from SubSet or UpdSet

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)

[EEE/ACM DS-RT 2017

21



Parallel Sort-Based Matching
on Shared-Memory Systems

e Sort endpoints in parallel @

* Scan endpoints in parallel??? Q

- Let SubSet and UpdSet be the sets of currently active
subscription and update intervals, resp.
- For each endpoint ¢

* |f t marks the beginning of a subs/upd interval X, then

- add X'to SubSet or UpdSet -w— .
. Else — Loop-carried

- remove X from SubSet or UpdSet / dep endencies

— X overlaps with all intervals currently in UpdSet (if X is a
subscription extent) or SubSet (if X is an update extent)

[EEE/ACM DS-RT 2017

22



4

Processor 1 Processor 2

Processor 0



— — —

Intervals for which the

| |

| |

| |

Intervals for which the | |
right endpoint only has | |
| |

| |

| |

| |

| |

| |

| |

left endpoint only has
been encountered by been encountered by
this processor this processor

%)
1
|
|
|
|
|
|
|
|
|
|

Processor 0 Processor 1 Processor 2



| 2 |— 3 r———— 4 |—
Ghb—1 6 ——
\ B B \ \ ° ©
%) 5 1
| | — | | — —_—
1,5 @ @ | | |
2 O 1 | | |
N
| | |
| |

Which intervals are still
“open” at the end of
each sequential scan

Processor 0 Processor 1 Processor 2



| 2 |— 3 |—— 4 pr————
) S R R — \ 6
\ B UL \ \ ° \ \ °
% 5 1
| > | = | -
T — | | | |
1,5 © © | | | | | |
@ o 1 | | | | |
SubSet (UpdSet) can now
ﬂ | | | be computed concurrently
1.5 1 2 | | | by all processors
N— ~— | | |
| | T | |
| | | 1,5 | |
=
1,5 1,2,95 1,5 1,3,5 1,3 1

Processor 0 Processor 1 Processor 2



Performance Evaluation

Parallel SBM implemented in C++/OpenMP

Testing according to the methodology used in
[Raczy et al. 20035]

Instances with a single dimension

Parameters:

— N = number of intervals S Area of intervals

_q= lapping d =
o = overlapping degree Total area of the routing space

[EEE/ACM DS-RT 2017

27



Execution platforms

IEEE/ACM DS-RT 2017 28



WCT (seconds, log scale)

Wall-Clock Time

Wall-Clock Time (WCT), =100, 10° extents

10000 —
1000

100

| [
solaris, parallel BF —&8—
solaris, parallel ITM
solaris, parallel SBM —&—
titan, parallel BF —e—
parallel ITM
titan, parallel SBM —e—

titan,

Parallel Brute Force
-.ﬂ___ﬂ__-a--'a'-a._ - . —

Parallel Interval Tree.

—

Parallel SBM |

“"O---0 | |

1]
1]

= i;l"'El"-B"'E"B"E---E-"E"{J

0.1

o -6

16 24 32
Number of threads 29



WCT (seconds, log scale)

10000

1000

100

10 |

0.1

Wall-Clock Time

Wall-Clock Time (WCT), =100, 10° extents

| [ [
solaris, parallel BF —&8—

solaris, parallel ITM

solaris, parallel SBM —&—
titan, parallel BF —e—
titan, parallel ITM

titan, parallel SBM —e—

Parallel Brute Force -
c3--g---@--8--g.

~—

B R
Two orders of magnitude

Parallel Interval Tree.

I One order of magnitude -
- Parallel SBM |
B--B--p. g.@--8

[

8—8--0--8--

? " O---9 | |
8 16 24 32
Number of threads 30



Speedup

20

15

10

Speedup

Speedup, a=100, 10° extents

|
solaris, parallel ITM
solaris, parallel SBM —&—
titan, parallel ITM
titan, parallel SBM —e—

-0 _pg--8

e’
-
'ﬂ

|

Parallel SBM

a--g--2

Parallel Interval Tree

-
o
-

8 16
Number of threads

24

32

31



Strong Scaling Efficiency

0.8

0.6

0.4

0.2

Strong Scaling Efficiency

Strong Scaling Efficiency, a=100, 10% extents

[
solaris, parallel ITM

titan, parallel ITM

solaris, parallel SBM —&—

titan, parallel SBM —e—

|

E(p) = S(p)/ p

-.B-.

Parallel SBM
B..o

Parallel Interval Tree

Number of threads

16

24

32
32



Weak Scaling Efficiency

0.8

0.6

0.4

0.2

Weak Scaling Efficiency

Weak Scaling Efficiency, a=100, 107 extents per thread

[
solaris, parallel ITM
solaris, parallel SBM
titan, parallel ITM
titan, parallel SBM

—_—

00—

W(p)

Time to perform p units of
__work on p processors

Time to perform one unit of
work on one processors

Bl O )

) Parallel SBM
B--g--B--

Parallel Interval Tree

|

Number of threads

16

24

32
33



Conclusions

* Parallel SBM improves the already fast SBM algorithm

- Can take advantage of modern multicore processors
* The speedup is limited by several factors

— The parallel sorting phase
- Intrinsecally serial regions
- The baseline is very fast!

e Future works

- Improve scaling efficiency

- Extend the parallel SBM algorithm to cope with moving
regions

- Implement parallel SBM on the GPU (?77?)

[EEE/ACM DS-RT 2017

34



Thanks for your attention

Questions?

[EEE/ACM DS-RT 2017

35



Brute-Force Matching

[EEE/ACM DS-RT 2017

36



Brute-Force Matching

[EEE/ACM DS-RT 2017

37



Grid-Based Matching

[EEE/ACM DS-RT 2017

38



Grid-Based Matching

_\m

IEEE/ACM DS-RT 2017

39



Grid-Based Matching

Y

b

[EEE/ACM DS-RT 2017

40



Grid-Based Matching

IR

N s

[EEE/ACM DS-RT 2017



Interval-Tree Matching

Based on the Interval Tree data structure
Solves the 1D matching problem

Subscription (Update) intervals are stored in the
leaves of an Interval Tree

- Balanced Search Tree

- Internal nodes are augmented with auxiliary data used to
steer queries towards overlapping intervals

Intersections can be identified with a tree visit for each

Update (Subscription) interval

Moreno Marzolla, Gabriele D'Angelo, Marco Mandrioli, A Parallel Data Distribution
Management Algorithm, proc. DS-RT 2013, http://dx.doi.org/10.1109/DS-RT.2013.23

[EEE/ACM DS-RT 2017

42


http://dx.doi.org/10.1109/DS-RT.2013.23

Interval Tree

S4
112
SG
19 712
S, S, S S
1 9] 2]3][7 12]]10
/

Min lower

[EEE/ACM DS-RT 2017

L Interval

Max upper




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

